The goal of the Wave Power Project Lysekil is to test a new concept to generate electricity from the motions of sea waves under realistic circumstances and over a longer period of time. The research area is situated on the west coast of Sweden, about 1 nautical mile (2 km) west of the Islandsberg peninsula in the municipality of Lysekil .
The concept is based on a system of unique piston driven generators. A so-called linear generator is standing protected on the seabed and is driven, via a rope, by a buoy on the surface. Several generators can be combined into groups, some 20-100 m beneath the surface and can further be combined into groups using standard cables on the seabed. With the help of power electronics, the generated alternating power is converted into direct current, which is then brought to land by means of standard cables and connected to the power grid through a DC/AC converter. This system with buoy, rope and generator is expected to be cheap, sturdy, environmentally benign, and to be able to cope with the extreme conditions at sea.
Besides the technical/functional verification and development, the system will also be evaluated scientifically from various environmental, marine biological and marine ecological points of view. The local authority in Västra Götaland has given permission to deploy up to 40 buoys and a maximum of 10 wave power devices at the site. The research facility is scheduled to be complete by 2009/2010 and will be in operation until 2013-2014 when all
the equipment will be removed or prolongation of permits has to be applied for.
the equipment will be removed or prolongation of permits has to be applied for.
Wave data – Islandsberg – What is the current wave climate? The wave measurement buoy that was installed during the spring of 2004 continually measures the waves that enter the research site at Islandsberg. From the gathered information on wave height and length, one can calculate something that may be thought of as a mean wave height, through a so called spectral analysis. This is called the significant wave height. The significant wave height is not only important for the knowledge of how large the waves are that fall in towards the coast, but it is also needed for the calculations of the amount of power flux that enters the research area, and for calculations on the amount energy that is carried by the waves. Previous Milestones:
2004, the final site is determined and the National Maritime Administration (Sjöfartsverket) lays out the marker buoys. The wave-measuring buoy is deployed after receiving permit from the County Administrative Board. Later, the first buoys arrive at the Uppsala Laboratory. During November the biological site investigation is started and during December the project has consultations with the County Administrive Board about the drawing of a sea cable from the project site to Gullholmen.
2003 During the summer; site and seabed exploration are carried out. Project consultation documentation and choice of the site is sent in to the County Administrative Board (Länsstyrelsen) in Västra Götaland. In December the experimental generator is finished in the Uppsala laboratory. 2002 Start of the project: background, goals and planning |
Project History and Purpose
The planning of the wave power project Islandsberg started early spring 2002 by researchers and PhD students at the Department for Engineering Science, Division for Electricity at Uppsala University .
The project has two goals. One is to verify that the basic technology for a new wave power concept is successful. The concept is based on a linear generator standing on a foundation on the seabed, and that will be tested under realistic, natural conditions. Another aim is to evaluate alternative solutions. This means, e.g. testing several buoys varying in material, size and design. The project will also develop generators when knowledge and experience grows. The connected generators will be studied as a unified system for electricity production.
The project has permission to use a maximum of 10 generators, which will be deployed successively from 2005 to 2010. Every generator will have an installed capacity of 10 kW. The complete installation of 10 units (100 kW) will, once it is fully operational, produce about 300,000 kWh per year. This amount of electricity is the equivalent of the yearly consumption of about 20 households.
Another, and equally important goal of the study is to gain knowledge of the effects of this new type of wave power plant (smaller and larger ones) on the local environment. This implies e.g. commercial and leisure fishing, effects on birds and other marine species and effects on other marine biological systems.
To study possible nature conservation and other environmental effects, the project is expanded with up to 30 dummy buoys. Consequently, questions about single units and those about the area effects of wave power plants can be investigated. As a result, the knowledge gained from these studies can be used to make environmentally friendly adjustments at an early stage. The generator technology and the simulation models on which the construction is based, allow for various construction alternatives. Environmental and nature conservation can be taken into account without having a negative effect on the technical and economical performance. Even the matter of acceptance, i.e. the view of the general public on wave power will be monitored (see more below)The search for a suitable site for the research installation started late 2002. The choice fell on an area in the sea off Islandsberg in the municipality of Lysekil .
This site provides an acknowledged good wave climate, access to harbours, other modes of transportation and other necessary facilities. It is close to Uppsala University 's Biological Station "Klubban", as well as to Kristineberg Marine Research Station, both of which are co-operators in the project. Furthermore, the closeness to and possibility for connection to the main grid was a decisive factor in the choice of the location.
The project area is relatively close to land, as this simplifies access and reduces costs. Even the average depth (25m) was a factor in the choice of the location, as well as the actual bottom substrate, which is a flat sandy seabed. The depth makes diving relatively easy and diving will be required on a regular basis.
Smaller areas close to the project location that are of a similar nature will be used as control areas, which is important for the biological studies.
A full-scale commercial installation, however, would probably be located further offshore and in deeper, completely open water away from islands and skerries. Such a location was not considered necessary though to achieve the project's scientific objectives.
The research installation is expected to be completed 2009-2010. The project will be concluded in 2013-2014, after which all the equipment will be removed. The purpose and advantage of a slow deployment is that knowledge can be gained and lessons learnt and that adjustments can be made gradually.
Coordinates: (updated during the project's development)
Marking buoy north: Lat N 58º 11'850, Long O 11º 22'460
Marking buoy south: Lat N 58º 11'630, Long O 11º 22'460
Measuring buoy: Lat N 58° 11'740, Long O 11° 22'340
Marking buoy north: Lat N 58º 11'850, Long O 11º 22'460
Marking buoy south: Lat N 58º 11'630, Long O 11º 22'460
Measuring buoy: Lat N 58° 11'740, Long O 11° 22'340
Nautical chart of the project site, which lies in the municipality of Lysekil and directly west of Islandsberg (2 km). The dashed area in the northwest indicates the flat sandy seabed area that was considered suitable. The dots give a preliminary plan of how the buoys will be deployed. The yellow dot furthest west is the measuring buoy, and the marks to the north and south are the marker buoys. The dashed and dotted line to Gullholmen/Härmanö indicates the planned course of the sea cable that will connect the wave power plant to the main grid on land.(shown as *). |
The obvious advantage of all forms of renewable energy (with the exception of bio-energy) is that no fuel is required, which eliminates the emission of carbon dioxide. However, it is not always mentioned that even renewable energy sources have a "cost" factor. Sometimes they require large areas and people living in the vicinity are affected in various ways. Renewable resources may also have an impact on their natural environment and on the organisms living there. The scale of these "costs" depends on the choice of the site and the type of energy production (amongst others). The potential of "green" energy sources varies as well, not in the least because of differences in energy content/energy density and in the amount of hours the energy source (sun, wind, waves, etc.) can be used during the year. When these and other physical/technical, economical and environmental factors are weighed up, wave energy stands out as being very competitive.
As the above figure shows, the energy content per unit increases in intensity from solar power, to wind power, to water. The reason for this is that nature concentrates solar energy in wind and then further amasses this energy in sea waves.
Direct use of solar power is limited because the degree of utilization is only 10-12 percent. Moreover, in Sweden the sun only shines 1000 of a year's 8760 hours. The rest of the time it is night, dawn, dusk or overcast.
Wind power plants are dependent on wind. The wind speed needs to be at least 13-15 m/s to fully utilize a wind power plant to its rated effect. For smaller types 10 m/s might suffice. Because it is not always windy, the degree of utilization is 25% on average (on land in Sweden ), going up to 30% if the plants are located at sea.
Waves continue to roll, even after the wind stops blowing, which leads to a higher degree of utilization than for wind power. The circumstances in Sweden , with moderate wave conditions, indicate a degree of utilization of 35% to 50% (depending on differences between the Baltic Sea and the west coast of Sweden ). However, in bigger seas and large oceans, this can go up to 70%. Furthermore, the energy density is a lot higher than for wind or solar power. The physical conditions for wave power are therefore very good and the relatively high degree of utilisation makes waves a predictable source.
Energy generation from wave power should thus have a considerable potential to contribute to our electrical energy production. This is especially the case along the coastlines of the big oceans, but is an option even for Swedish waters, provided that suitable technologies can be developed. About 70 percent of the earth's surface is covered by water. Various estimations show that the world's potential for wave energy is 10,000-15,000 TWh per year. That is about the same as the economic potential of hydropower in the world. In the Baltic Sea alone, the potential is calculated to be 24 TWh, which is much more than the planned Swedish development of renewable energy in the next 5-10 years.
Hydropower, which is based on stored, potential energy, is of course one of the best sources of renewable energy, since hydropower plants can be utilised close to 100 percent of time (provided it rains enough). This high degree of utilisation is not achieved that often, because hydropower is used to regulate the power production (i.e. adjust the production to the consumption which varies during the day). Fossil fuels, nuclear power and bio fuel are used in the same manner. Their energy generation is usually only interrupted because of maintenance or low energy consumption (e.g. during summer)
Research into wave power and wave power systems has been performed for decades. There have been several proposals on how to convert the energy in the ocean's waves into electricity and several research installations have been built all over the world. So far, none have been commercially viable. The main reason has been that all experiments used complicated mechanics and standard generators that are optimised for speeds up to 100 times higher than those generated by ocean waves. A wave rolls 10-15 times per minute. However, a standard generator typically spins 1500 rotations per minute (rpm).
The result has been bulky and expensive installations; often placed in or close to the water surface and including gearboxes as well as other complex and vulnerable sub-systems. Because of their size and emplacement, they cannot cope with the harsh north-Atlantic wave climate they are intended for.
No serious endeavours have been made on wave power plants for the considerably milder, but steadier wave climate in the Baltic Sea . Since the 1980ies, the wave energy of these waters has been considered to be too small for the types of systems tested so far.
However, through a thorough analysis of the physical prerequisites and through applying material science and other relevant advances in the construction, a new system concept for wave power has been developed. The new concept is environmentally friendly and commercially interesting in a manner that is very different from five or ten years ago.
The wave power concept being tested in the project differs in many ways from earlier attempts. Instead of adjusting rotating standard generators to rolling waves, a totally new type of generator has been developed at Uppsala University , which is specially designed for "standard" waves.
The concept is based on a generator situated on the seabed. The other components are a rope that couples the generator to a buoy on the surface. The rotor exists of a piston that moves up and down in the stator. Therefore, the rotor does not spin, but is driven directly via the rope by the buoy motion on the surface. This results in a host of system advantages. A generator placed on the seabed is protected from harsh weather. Should a buoy break adrift, it should float to land. This, together with the rope, would only constitute a minor cost.
This new direct-driven linear generator with a uniquely low pole width means that electrical power can be generated even with the low velocity of ocean waves. It also entails that the power supply can be connected to the main grid on land by standard transmission. Moreover, this type of generator allows for very simple device mechanics (buoy and rope). These can also cope with high loads in a cost effective way.
Computer simulations indicate that this solution can compete commercially with established methods of producing electrical energy, without long-term subsidies. This is an important prerequisite, because renewable energy should be able to contribute to the energy supply without negative socio-economic consequences.
What is more, the technology is expected to have little or limited effect on the environment. Wave power does not produce any emissions, will not be visible from land and may protect the marine environment. The solution contains only well known materials. It is not dependent on shallow banks and will contribute to fulfilling at least 5 of the 15 environmental goals that the Swedish Parliament approved:
- Limited environmental effects (emission of greenhouse gases)
- Fresh air
- Only natural acidification
- Protecting ozone layer
- Safe radiation environment
Besides, wave power plants may protect and even improve the marine environment where they are located, as well as limit over-fishing. In this way, they fulfil 2 more environmental goals:
- Ocean in balance
- Living coast and archipelago
© Oskar Danielsson, Division for Electricity . Uppsala University |
Above is a schematic sketch of a linear generator for the extraction of energy from wave power. A buoy follows the waves' motions up and down. About 20 percent of the incoming energy can be absorbed and turned into electrical power. The buoy's motions are transferred via a rope or cable to the generator's moveable part, which in this case consists of a piston. The piston is equipped with very strong neodymium-iron-boron (Nd-Fe-B) magnets and induces currents in the stator's windings. In addition, the piston is connected to a spring system, which gives the generator additional power also when the buoy is mowing down a wave.
Calculations show that for a unit, like the one above, to give 10 kW power, one needs a linear generator with a stroke length of about 2m. The unit's total weight will be about 20 ton, the bulk of that being the foundation. For Swedish waters, which have relatively small waves, powers of 10 kW per unit are suitable. For bigger waves, like the ones off the coast of Norway or Scotland , bigger units with powers of 100 kW or higher are more advantageous.
Another advantage of the technology is that it is modular. Wave power plants can consist of a suitable amount of units, which share the systems of transfer of energy to land. More units can be added afterwards when demand grows. In the same way, one or more units can be disconnected and lifted out without the whole installation being forced out of service. Future offshore installations are expected to consist of some hundred units up to several thousand, depending on the electricity need and location.
Graphical illustration of a wave power plant
© Karl Åstrand and Division for Electricity, Uppsala University
All energy systems have an effect on the environment. This is valid even for energy generation from renewable sources. In these cases, it is especially the local environment that is affected. The effect is double-sided, as the installations on the one hand have an effect on animals and nature to a greater or lesser extent. On the other hand, the installation itself is affected by and has to be adapted to the local conditions.
Hydropower is one example of renewable energy production confronted with this problem. The dams and level control affect chiefly waterborne animals, salmon being the classical example. Even wind power can have various negative effects, e.g. when some bird species suffer fiercely in certain areas.
Wave power is largely untested as a source of energy production. It is therefore important to learn at an early stage about the possible negative effects of wave power plants on marine organisms and make adjustments accordingly. This is why the research installation consists of 30 extra buoys (only anchored to buoy foundations), besides the 10 with generators.
Thus, potential area effects, which are connected to large wave power projects, are simulated better. Indications of negative effects and their causes can be addressed at an early stage and lessons can be learnt about how possible problems can be avoided.
Wave power projects, unlike sea-based wind power plants are not dependent on biologically sensitive seabed banks for their location. Nevertheless, they can be expected to have a local effect, especially on smaller seabed based organisms. Bigger wave power plants may also have effects on fish, marine mammals like seals and, in Swedish waters, on porpoises. In other seas, other species, like whales, should be studied in more detail.
These studies are done in cooperation with the Department for Ecology and Evolution at Uppsala University , department of Animal Ecology (www.ebc.uu.se/zooeko/index.shtml). Uppsala University also has at its disposal the Klubban Biological Station (www.ebc.uu.se/klubban/Address.htm) at Fiskebäckskil. The vicinity to Kristineberg Marine Research Station (www.kmf.gu.se) has opened up possibilities of cooperation in the project.
Biological/ecological sub-projects will, among others, consist of:
- Effects on the seabed fauna, mainly marine invertebrates
- Effects on fish living on the seabed (benthic) as well as on pelagic fish (living in the open water)
- Effects on seabirds
- Effects on marine mammals (maybe the local harbour seal can be used as an indication)
- Positive effects such as fouling and artificial reefs - see more below
The knowledge gained from these studies can, if needed, lead to adaptations and adjustments of the generator and buoy technologies. It could also give indications, in a larger perspective, on the most suitable locations for larger wave power parks and how the spacing design should look like.
A combined biological and technical problem for example, is fouling. Solid objects located at sea are quickly fouled by algae, mussels and barnacles (a well-known problem for boat-owners). It is therefore reasonable to assume that buoys and the upper part of the rope connecting the buoy with the generator will be fouled. The generator on the seabed though, will not be affected as fouling is dependent on sunlight and mainly occurs near the surface.
The technical aspect of this is to calculate and understand how the system will be affected by the extra mass due to the biofouling of buoys. There will probably also be some effect on the buoy's mobility in the water. Regular removal of algae, mussels etc, means higher maintenance costs and will therefore lead to a higher energy price. The technical/economical question is then whether the fouling should be taken care of or whether it would be better to compensate for the fouling from the start, e.g. through a certain over-dimensioning of the components.
From a biological point of view, fouling can only be a good thing. It leads to an increased local biodiversity, which in later stages might lead to an influx of small animals, e.g. smaller crawfish, which in its turn would attract predators and in the end would result in more fish in the area. Several of the concrete foundations for both generators and buoys will be cast in special designs that could be beneficial to certain organisms like crabs and lobsters.
Finally, sound generation and changes in sedimentation motions and water motions will be examined, as these factors may have indirect effect on the local environmental situation . The general public's attitude to wave power is an important matter. Big-scale eco-friendly energy production requires the use of large areas in a way that limits other activities or makes them altogether impossible (think of hydropower or wind power). This goes for big-scale wave power plants as well. However, the most suitable location for commercial wave power plants is further offshore and will therefore not spoil the view from the coast, e.g. wide, open horizons. A buoy sticks out at most one meter above the surface and is consequently only visible at close range. Commercial shipping is not possible through a wave power plant, which is why they will not be located close to fairways etc. Smaller leisure boats will probably be able to navigate through a wave power area and there should be no objections to leisure fishing activities.
Commercial fishing with trawl nets and dragnets will be impossible though. Fishing interests should therefore be weighed carefully against energy generation interests. One argument could be that wave power areas could become "marine nature reserves". This would have side effects that in the long run would favour fishing in the surrounding areas. This phenomenon has been observed in other waters. - Västra Orust Energitjänst (www.voe.se)
- From http://www.el.angstrom.uu.se/forskningsprojekt/WavePower/Lysekilsprojektet_E.html